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Statistical inference
Fundamental ingredients

Population
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Statistical inference
Fundamental ingredients

Sample



• Point estimation: find a number value (estimate) for the unknown 
population parameter based on the sample information.

• Interval estimation: find an interval of values (estimate) for the 
unknown population parameter based on the sample 
information.

• Hypothesis testing: make a statement about the population based 
on two complementary hypothesis. 
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Fundamental ingredients
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Point estimation
Properties

The optimal estimator is a random variable with expected value 
E[x] equal to the parameter to be estimated (unbiased estimator) 
and variance inversely related to the sample size with the minimum 
value (minimum-variance estimator).
A good estimator minimizes the mean squared error (MSE):

𝑀𝑆𝐸 𝑡 = 𝐸[𝑡 − 𝜃]!+𝑉𝑎𝑟[𝑡]
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Point estimation
What are the estimators?
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Point estimation
Sample mean estimator
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Point estimation
Sample mean estimator
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Point estimation
Sample mean distribution
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Point estimation
Sample mean distribution
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Sample mean distribution
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Interval estimation
Confidence interval

Through the construction of a Confidence Interval, an interval of 
values is identified within which the parameter of interest of the 
population falls, with a certain degree of confidence.

estimate

confidence interval

Lower limit Upper limit

parameter
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Interval estimation
Confidence interval
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Interval estimation
Confidence interval
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Interval estimation
Confidence interval

From the asymptotic properties of the sample mean estimator, we 
know that:

!𝑋 − 𝜇

𝜎9
𝑛

~𝑁(0,1)

Then, the confidence interval at 1 − 𝛼 confidence degree is

𝑃 −𝑍:/9 ≤
!𝑋 − 𝜇

𝜎9
𝑛

≤ +𝑍:/9 = 1 − 𝛼
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Interval estimation
Confidence interval

From the asymptotic properties of the sample mean estimator, we 
know that:

!𝑋 − 𝜇

𝜎9
𝑛

~𝑁(0,1)

Then, the confidence interval at 1 − 𝛼 confidence degree is

C.I. (1−𝛼 ) = !𝑋 ± 𝑍:/9
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=

17



Interval estimation
Confidence interval

From the asymptotic properties of the sample proportion estimator, 
we know that:

5𝜋 − 𝜋

𝜋(1 − 𝜋)
𝑛

~𝑁(0,1)

Then, the confidence interval at 1 − 𝛼 confidence degree is

𝑃 −𝑍:/9 ≤
5𝜋 − 𝜋

𝜋(1 − 𝜋)
𝑛

≤ +𝑍:/9 = 1 − 𝛼
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Interval estimation
Confidence interval

From the asymptotic properties of the sample proportion estimator, 
we know that:

5𝜋 − 𝜋

𝜋(1 − 𝜋)
𝑛

~𝑁(0,1)

Then, the confidence interval at 1 − 𝛼 confidence degree is

C.I. (1−𝛼 ) = 5𝜋 ± 𝑍:/9
>(?@>)

=
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Interval estimation
Confidence interval

From the asymptotic properties of the sample difference of two 
mean (equal variance) estimator, we know that:
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Interval estimation
Confidence interval

From the asymptotic properties of the sample difference of two 
mean (equal variance) estimator, we know that:
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Interval estimation
Confidence interval

From the asymptotic properties of the sample difference of two 
mean (not equal variance) estimator, we know that:
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Interval estimation
Confidence interval
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From the asymptotic properties of the sample difference of two 
mean (not equal variance) estimator, we know that:
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Interval estimation
Confidence interval

From the asymptotic properties of the sample difference of two 
proportions estimator, we know that:

5𝜋? − 5𝜋9
𝜋?(1 − 𝜋?)

𝑛?
+𝜋9(1 − 𝜋9)𝑛9

~𝑁(0,1)

Then, the confidence interval at 1 − 𝛼 confidence degree is

𝑃 −𝑍!/# ≤
5𝜋? − 5𝜋9

𝜋?(1 − 𝜋?)
𝑛?

+𝜋9(1 − 𝜋9)𝑛9

≤ +𝑍!/# = 1 − 𝛼
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Interval estimation
Confidence interval

From the asymptotic properties of the sample difference of two 
proportions estimator, we know that:

5𝜋? − 5𝜋9
𝜋?(1 − 𝜋?)

𝑛?
+𝜋9(1 − 𝜋9)𝑛9

~𝑁(0,1)

Then, the confidence interval at 1 − 𝛼 confidence degree is

C.I. (1−𝛼 ) = ( &𝜋$−&𝜋#) ± 𝑍!/#
𝜋$(1 − 𝜋$)

𝑛$
+
𝜋#(1 − 𝜋#)

𝑛#
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Interval estimation
Confidence interval
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Interval estimation
Confidence interval

Notes:
Usually, the variance of population 𝜎! is unknown. However, it can 
be estimated with the following correct estimator:

𝑆! = ∑!"#
$ ($!% &')%

)%*
  

In this case the observed statistic is not Normal distributed: 

!𝑋 − 𝜇

𝑆#
𝑛

~𝑡(𝑛 − 1)
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SAMPLE 1

SAMPLE 2   

SAMPLE 3 

NORMOTENSIVE 
POPULATION

Point and interval estimation
Three samples with size equal to 10, 25, and 50
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SAMPLE 1

SAMPLE 2   

SAMPLE 3 

𝑛 = 10
+𝑋 = 108.65 mm/Hg
𝑆𝐸( +𝑋) = 2.69/ 10
𝐶𝐼&'% = [106.73, 110.58]

NORMOTENSIVE 
POPULATION

Point and interval estimation
Three samples with size equal to 10, 25, and 50
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SAMPLE 1

SAMPLE 2   

SAMPLE 3 

𝑛 = 10
+𝑋 = 108.65 mm/Hg
𝑆𝐸( +𝑋) = 2.69/ 10
𝐶𝐼&'% = [106.73, 110.58]

𝑛 = 25
+𝑋 = 109.14 mm/Hg
𝑆𝐸( +𝑋) = 3.79/ 25
𝐶𝐼&'% = [107.58, 110.71]

NORMOTENSIVE 
POPULATION

Point and interval estimation
Three samples with size equal to 10, 25, and 50
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SAMPLE 1

SAMPLE 2   

SAMPLE 3 

𝑛 = 10
+𝑋 = 108.65 mm/Hg
𝑆𝐸( +𝑋) = 2.69/ 10
𝐶𝐼&'% = [106.73, 110.58]

𝑛 = 25
+𝑋 = 109.14 mm/Hg
𝑆𝐸( +𝑋) = 3.79/ 25
𝐶𝐼&'% = [107.58, 110.71]

𝑛 = 50
+𝑋 = 110.48 mm/Hg
𝑆𝐸( +𝑋) = 2.56/ 50
𝐶𝐼&'% = [109.75, 111.20]

NORMOTENSIVE 
POPULATION

Point and interval estimation
Three samples with size equal to 10, 25, and 50
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SAMPLE 1

SAMPLE 2   

SAMPLE 3 

HYPERTENSIVE 
POPULATION

Point and interval estimation
Three samples with size equal to 10, 25, and 50
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SAMPLE 1

SAMPLE 2   

SAMPLE 3 

𝑛 = 10
+𝑋 = 150.01 mm/Hg
𝑆𝐸( +𝑋) = 2.45/ 10
𝐶𝐼&'% = [148.25, 151.76]

HYPERTENSIVE 
POPULATION

Point and interval estimation
Three samples with size equal to 10, 25, and 50
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SAMPLE 1

SAMPLE 2   

SAMPLE 3 

𝑛 = 10
+𝑋 = 150.01 mm/Hg
𝑆𝐸( +𝑋) = 2.45/ 10
𝐶𝐼&'% = [148.25, 151.76]

𝑛 = 25
+𝑋 = 150.36 mm/Hg
𝑆𝐸( +𝑋) = 3.18/ 25
𝐶𝐼&'% = [149.05, 151.68]

HYPERTENSIVE 
POPULATION

Point and interval estimation
Three samples with size equal to 10, 25, and 50



Point and interval estimation
Three samples with size equal to 10, 25, and 50
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SAMPLE 1

SAMPLE 2   

SAMPLE 3 

𝑛 = 10
+𝑋 = 150.01 mm/Hg
𝑆𝐸( +𝑋) = 2.45/ 10
𝐶𝐼&'% = [148.25, 151.76]

𝑛 = 25
+𝑋 = 150.36 mm/Hg
𝑆𝐸( +𝑋) = 3.18/ 25
𝐶𝐼&'% = [149.05, 151.68]

𝑛 = 50
+𝑋 = 150.03 mm/Hg
𝑆𝐸( +𝑋) = 3.01/ 50
𝐶𝐼&'% = [149.17, 150.89]

HYPERTENSIVE 
POPULATION



Hypothesis testing
Theoretical framework

Decisional scheme:
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Hypothesis testing
Theoretical framework

Sample size: 
The sample size is a fundamental parameter in the design of a 
statistical study. It directly influences the statistical power, which is 
the probability of detecting a true effect when it exists, thereby 
minimizing the risk of a Type II error (false negative). 
Power is commonly set at 0.80, indicating a 20% chance of failing to 
detect a real effect. Another key factor is the effect size, which 
quantifies the magnitude of the expected difference or association. 

Small effect sizes (e.g., Cohen’s d = 0.2 or r = 0.1) require 
substantially larger sample sizes compared to medium or large 
effects.
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Hypothesis testing
Theoretical framework
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Hypothesis testing
Theoretical framework

P-value:
In statistical inference, the p-value is the probability of obtaining 
results at least as extreme as the observed results of a statistical 
hypothesis test, assuming that the null hypothesis is correct. 
The p-value is used as an alternative to rejection points to provide 
the smallest level of significance at which the null hypothesis would 
be rejected. A smaller p-value means that there is stronger 
evidence in favor of the alternative hypothesis.
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Hypothesis testing
Theoretical framework
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Hypothesis testing
Theoretical framework
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Hypothesis testing
Theoretical framework
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Hypothesis testing
Group comparison

43

Type of Data/Comparison

Qualitative

-

Qualitative

Quantitative

-

Quantitative

Pearson's r

2 groups

Non paired

T-test

Quantitative

-

Qualitative

> 2 groups

Paired

Paired t-test

Non paired

One-way

ANOVA

Paired

One-way

repeated

measures

ANOVA

2 groups

Non paired

Chi-Square

Test

> 2 groups

Paired

McNemar's

Test

Chi-Square

Test

Fisher's

Exact Test

Expected

count >=5 in

 >= 75% cells

Expected 

count >=5 in

< 75% cells

Spearman's rho
Kruskall-Wallis

test

Mann-Whitney

U test

Wilcoxon

Signed Rank

test

Friedman test

Statistical Tests 
R Cheat Sheet

t.test(x ~ A)

wilcox.test(x ~ A)

chisq.test(table(A, B)) fisher.test(table(A, B))

summary(aov(x ~ C))

kruskal.test(x, C)

t.test(x, y,  
paired = TRUE)
t.test(x ~ A,
paired = TRUE)

wilcox.test(x, y, 
paired = TRUE)

wilcox.test(x ~ A,
paired = TRUE)

mcnemar.test(table(A, B)) chisq.test(table(A, C))

model <- lm(y ~ a + s, 
data = d)

friedman.test( 
cbind(x, y, z))

cor.test(x, y)

cor.test(x, y,  
method = "spearman")

analysis <- Anova 
(model, idata = d, 
idesign = ~s)

Normally
Distributed

Skewed

hist(x,probability=T)
lines(density(x))

-
qqnorm(x)

shapiro.test(x)



Hypothesis testing
Group comparison
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Type of Data/Comparison

Qualitative

-

Qualitative

Quantitative

-

Quantitative

Pearson's r

2 groups

Non paired

T-test

Quantitative

-

Qualitative

> 2 groups

Paired

Paired t-test

Non paired

One-way

ANOVA

Paired

One-way

repeated

measures

ANOVA

2 groups

Non paired

Chi-Square

Test

> 2 groups

Paired

McNemar's

Test

Chi-Square

Test

Fisher's

Exact Test

Expected

count >=5 in

 >= 75% cells

Expected 

count >=5 in

< 75% cells

Spearman's rho
Kruskall-Wallis

test

Mann-Whitney

U test

Wilcoxon

Signed Rank

test

Friedman test

Statistical Tests 
R Cheat Sheet

t.test(x ~ A)

wilcox.test(x ~ A)

chisq.test(table(A, B)) fisher.test(table(A, B))

summary(aov(x ~ C))

kruskal.test(x, C)

t.test(x, y,  
paired = TRUE)
t.test(x ~ A,
paired = TRUE)

wilcox.test(x, y, 
paired = TRUE)

wilcox.test(x ~ A,
paired = TRUE)

mcnemar.test(table(A, B)) chisq.test(table(A, C))

model <- lm(y ~ a + s, 
data = d)

friedman.test( 
cbind(x, y, z))

cor.test(x, y)

cor.test(x, y,  
method = "spearman")

analysis <- Anova 
(model, idata = d, 
idesign = ~s)

Normally
Distributed

Skewed

hist(x,probability=T)
lines(density(x))

-
qqnorm(x)

shapiro.test(x)



Hypothesis testing
Parametric or non-parametric?
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Hypothesis testing
Parametric or non-parametric?

Shapiro-Wilk normality test:
The Shapiro–Wilk test is a test of normality in frequentist statistics. 
It was published in 1965 by Samuel Sanford Shapiro and Martin 
Wilk. 
The null-hypothesis of this test is that the population is normally 
distributed. Thus, if the p-value is lesser than the chosen alpha level 
(e.g., 0.05), then the null hypothesis is rejected and there is 
evidence that the data tested are not normally distributed. 

On the other hand, if the p-value is greater than the chosen alpha 
level, then the null hypothesis (that the data came from a normally 
distributed population) can not be rejected.
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Hypothesis testing
Parametric or non-parametric?
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Pearson correlation test:
The Pearson correlation test is a parametric statistical test that 
measures the strength and direction of the linear relationship 
between two continuous variables. 
A value between -1 and 1 that quantifies the linear correlation:
ür =  1: Perfect positive linear relationship.
ür = -1: Perfect negative linear relationship.

ür =   0: No linear relationship (null hypothesis 𝐻+)
A significant result (typically p < 0.05) leads to rejecting the null 
hypothesis, indicating that a linear relationship exists between the 
variables.
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R = 0.76, p < 2.2e-16
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T-Student test (independent groups):
The independent two-sample t-test compares the means of two 
independent groups to determine if there is a statistically significant 
difference between them. 
The null hypothesis	𝐻+ is that the means of the two groups are 
equal. The t-test statistic is calculated as:

3𝑋* − 3𝑋!

𝑆,
1
𝑛*
+ 1
𝑛!

~𝑡-; )#/)%%!

A significant result (typically p < 0.05) suggests that there is a 
significant difference between the means of the two groups.
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T-test, p = 0.0048
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T-test, p = 0.45
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T-test, p = 0.45

40

80

120

160

Female Male

Sy
st

ol
ic

 b
lo

od
 p

re
ss

ur
e

Group
Female
Male

Within group of 
normotensive 

patients



Hypothesis testing
Parametric: quantitative vs qualitative (2 groups)

57

T-Student test (paired groups):
The paired t-test compares the means of two related groups to 
determine if there is a statistically significant difference between 
them. This test is often used when the same subjects are used in 
both conditions. 
The null hypothesis	𝐻+ is that the mean difference between the 
paired observations is zero. The t-test statistic is calculated as:

�̅�

9𝑆0 𝑛

~𝑡-;)%*

A significant result (typically p < 0.05) suggests that there is a 
significant difference between the paired observations.
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T-test, p = 6.8e-11
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Analysis of Variance (ANOVA) + Tukey’s HSD post-hoc test:
One-way analysis of variance (abbreviated one-way ANOVA) is a 
technique that can be used to compare whether two o more 
samples means are significantly different or not. 
Typically, however, the one-way ANOVA is used to test for 
differences among at least three groups, since the two-group case 
can be covered by a t-test. When there are only two means to 
compare, the t-test and the ANOVA e test are equivalent.
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Analysis of Variance (ANOVA) + Tukey’s HSD post-hoc test:
One-way analysis of variance (abbreviated one-way ANOVA) is a 
technique that can be used to compare whether two o more 
samples means are significantly different or not. 
Typically, however, the one-way ANOVA is used to test for 
differences among at least three groups, since the two-group case 
can be covered by a t-test. When there are only two means to 
compare, the t-test and the ANOVA e test are equivalent.

Hypotheses of ANOVA test can be formalized as follow:

:
𝐻+: 𝜇* = 𝜇! = ⋯ = 𝜇1
𝐻*: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Analysis of Variance (ANOVA) + Tukey’s HSD post-hoc test:
The Tukey Test (or Tukey procedure), also called Tukey’s Honest 
Significant Difference test, is a post-hoc test based on the 
studentized range distribution. 
An ANOVA test can tell you if your results are significant overall, but 
it won’t tell you exactly where those differences lie. After you have 
run an ANOVA and found significant results, then you can run 
Tukey’s HSD to find out which specific groups' means (compared 
with each other) are different. 
The test compares all possible pairs of means.
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Anova, p < 2.2e-16
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Pairwise t-test:
The pairwise t-test is used to compare the means of pairs of groups 
to determine if there are statistically significant differences 
between them. This test is often used after or as alternative of the 
ANOVA to identify which specific groups differ from each other.
When performing multiple pairwise comparisons, the risk of Type I 
error (false positive) increases. Common methods to adjust for this 
include:

üBonferroni adjustment: adjust the significance level by dividing it 
by the number of comparisons.

üHolm adjustment: a stepwise method that is less conservative 
than Bonferroni.
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p < 2.22e-16
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p < 2.22e-16
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ANOVA for repeated measures  + Tukey’s HSD post-hoc test:
The repeated measures ANOVA compares the means of three or 
more related groups to determine if there is a statistically 
significant difference among them. It is used when the same 
subjects are measured multiple times under different conditions or 
over different time points.
An ANOVA test can tell you if your results are significant overall, but 
it won’t tell you exactly where those differences lie. After you have 
run an ANOVA and found significant results, then you can run 
Tukey’s HSD to find out which specific groups' means (compared 
with each other) are different.
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Anova, p < 2.2e-16
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Hypothesis testing
non-parametric

Example with VETERAN dataset:
The Veterans' Administration Lung Cancer study dataset is available 
in the ‘survival’ R package. It is a randomized trial of two treatment 
regimens for lung cancer. This is a dataset composed by 137 
observations and 8 variables:
1. trt:  1=standard 2=test

2. celltype: 1=squamous, 2=smallcell, 3=adeno, 4=large

3. time:  survival time in days

4. status: censoring status

5. karno: Karnofsky performance score (100=good)

6. diagtime: months from diagnosis to randomisation

7. age:  in years

8. prior: prior therapy 0=no, 10=yes
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Example with VETERAN dataset:
The Veterans' Administration Lung Cancer study dataset is available 
in the ‘survival’ R package. It is a randomized trial of two treatment 
regimens for lung cancer. This is a dataset composed by 137 
observations and 8 variables:
1. trt:  1=standard 2=test

2. celltype: 1=squamous, 2=smallcell, 3=adeno, 4=large

3. time:  survival time in days

4. status: censoring status

5. karno: Karnofsky performance score (100=good)

6. diagtime: months from diagnosis to randomisation

7. age:  in years

8. prior: prior therapy 0=no, 10=yes
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Spearman's rank correlation test:
The Spearman's rank correlation test is a non-parametric statistical 
test that measures the strength and direction of the linear 
relationship between two continuous variables. 
A value between -1 and 1 that quantifies the linear correlation:
ür =  1: Perfect positive linear relationship.
ür = -1: Perfect negative linear relationship.

ür =   0: No linear relationship (null hypothesis 𝐻+)
A significant result (typically p < 0.05) leads to rejecting the null 
hypothesis, indicating that a linear relationship exists between the 
variables.
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R = 0.57, p = 5.2e-13
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non-parametric: quantitative vs quantitative
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Wilcoxon test:
The Wilcoxon signed-rank test is a non-parametric statistical 
hypothesis test used to compare two related samples, matched 
samples, or repeated measurements on a single sample to assess 
whether their population mean ranks differ (i.e., it is a paired 
difference test). 
It can be used as an alternative to the paired Student's t-test when 
the distribution of the difference between two samples' means 
cannot be assumed to be normally distributed.
A Wilcoxon signed-rank test is a non-parametric test that can be 
used to determine whether two dependent samples were selected 
from populations having the same distribution.
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non-parametric: quantitative vs qualitative (2 groups)
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Hypothesis testing
non-parametric: quantitative vs qualitative (2 groups)

Wilcoxon, p = 0.35
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Hypothesis testing
non-parametric: quantitative vs qualitative (2 groups)
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Hypothesis testing
non-parametric: quantitative vs qualitative (> 2 
groups)



Kruskal-Wallis test + Dunn's post-hoc test:
The Kruskal-Wallis test is a non-parametric method for testing 
whether samples originate from the same distribution.
It is used for comparing two or more independent samples of equal 
or different sample sizes, and extends the Mann-Whitney U test, 
which is used for comparing only two groups. 
The parametric equivalent of the Kruskal-Wallis test is the one-way 
analysis of variance (ANOVA). 
A significant Kruskal-Wallis test indicates that at least one sample 
stochastically dominates one other sample. The test does not 
identify where this stochastic dominance occurs or for how many 
pairs of groups stochastic dominance obtains. 
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Hypothesis testing
non-parametric: quantitative vs qualitative (> 2 
groups)



Kruskal-Wallis test + Dunn's post-hoc test:
For analyzing the specific sample pairs for stochastic dominance, 
Dunn's test can be used. 
It is the appropriate non-parametric pairwise multiple-comparison 
procedure when a Kruskal-Wallis test is rejected.
After you have run a Kruskal-Wallis and found significant results, 
then you can run Dunn’s test to find out which specific groups are 
different. 
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Hypothesis testing
non-parametric: quantitative vs qualitative (> 2 
groups)

Kruskal-Wallis, p = 0.00014
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non-parametric: quantitative vs qualitative (> 2 
groups)
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groups)
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Survival analysis
Kaplan-Meier estimator

Survival function:
The survival function is a function that gives the probability that a 
patient, device, or other object of interest will survive beyond any 
specified time. 
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Survival analysis
Kaplan-Meier estimator

Survival function:
The survival function is a function that gives the probability that a 
patient, device, or other object of interest will survive beyond any 
specified time. 
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Survival analysis
Kaplan-Meier estimator

The Kaplan-Meier estimator is a non-parametric statistic used to 
estimate the survival function from lifetime data. In medical 
research, it is often used to measure the fraction of patients living 
for a certain amount of time after treatment. 

In other fields, Kaplan-Meier estimators may be used to measure 
the length of time people remain unemployed after a job loss, the 
time-to-failure of machine parts, or how long fleshy fruits remain 
on plants before they are removed by frugivores. 
The estimator is named after Edward L. Kaplan and Paul Meier, who 
each submitted similar manuscripts to the Journal of the American 
Statistical Association. 
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Survival analysis
Kaplan-Meier estimator

To compare the survival distributions of two or more groups, the 
log-rank test is used. It is a non-parametric statistical test commonly 
used in survival analysis to test the null hypothesis that there is no 
difference in survival between the groups.

The log-rank test compares the observed number of events (e.g., 
deaths) to the expected number of events under the null 
hypothesis, at each observed event time. 
The null hypothesis is that there is no difference in survival between 
the groups, and then A significant result (typically p < 0.05) 
indicates that there is a difference in the survival distributions 
between the groups.
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Example with Ovarian dataset:
The Ovarian dataset is available in the ‘survival’ R package. It is a 
randomised trial comparing two treatments for ovarian cancer. This 
is a dataset composed by 26 observations and 6 variables:
1. futime: survival or censoring time

2. fustat: censoring status

3. age:  in years

4. resid.ds: residual disease present (1=no,2=yes)

5. rx:  treatment group

6. ecog.ps: ECOG performance status (1 is better, see reference)

98

Survival analysis
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